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High coherence of laser light opened the new field of
interferometry that can be applied to diffusely reflect-
ing surfaces. Holography enables three-dimensional (3D)
imaging by recording amplitude and phase of the ob-
ject wave, while the speckle patterns appearing in the
laser scattered by a diffuse surface show high contrast
everywhere in 3D space. Holographic interferometry
and speckle metrology detect changes of phase and in-
tensity of the light diffusely reflected from diffuse sur-
faces and are closely related with each other because the
changes of intensity and phase are dependent on each
other. Localization and interpretation of the fringe pat-
terns observed in holographic interferometry were widely
discussed[1−4]. Relationships between holographic in-
terferometry and speckle methods were later clarified
analytically[5,6]. These results were utilized in electronic
recording and processing of speckle patterns employed
for speckle metrology. Digital holography that comprises
both digital recording of holograms and digital recon-
struction of images brings these techniques even closer
to each other because of flexibility of digital recording
and processing of intensities obtained from comparatively
simple optical setups, realizing automatic and quantita-
tive measurements of surface shape and deformation of
3D diffuse objects. However, the effects of digital record-
ing such as those of number and pitch of charge-coupled
device (CCD) pixels and the bit-depth of video signals
cannot be investigated in a simple analytic way. Even
the optical influence of surface roughness requires compli-
cated assumptions on its interaction with incident light.
In this letter, we propose a comparatively simple model
based on the random phase scatterers model for an ob-
ject and the angular spectrum for propagation[7]. It has
been employed for computer simulation and is applicable
to general problems appearing in the measurement of
surface shape and deformation using coherent light.

In the former theory on fringe formation in holographic
and speckle interferometry, we expressed the complex
amplitude at an observation plane by a linear superpo-
sition of the complex amplitude at the object plane[5].

The weighting function for the superposition is either
the parabolic wave or the diffraction at a lens aperture,
depending on the mutual position of an object and an
observation field. The observation field is either the
diffraction field or the image field. In the present analy-
sis, the both observation fields can be investigated from
the unified standpoint that is based on the angular spec-
trum expansion of optical fields[7]. We also assume a
process of digital holography where the complex ampli-
tude in the diffraction field is recorded and reconstructed
to produce an image of the object. In this case, hologram
size plays a role of a lens aperture, while the resolution of
the CCD limits a size of the recordable object. Thus we
can treat the general imaging systems including digital
holography and ordinary lens setups.

In digital holography, a laser beam is divided into two
paths, a reference and an object, and recombined to
generate a hologram as an interference pattern, which is
recorded by a CCD and stored in a computer. We start
from a digital holographic setup represented by the two-
dimensional (2D) coordinate system shown in Fig. 1.
A diffuse object is illuminated by a point monochro-
matic source S with the wave number k = 2π/λ.

Fig. 1. Coordinate system.
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An object point P [x, h(x) + r(x)], where h(x) and r(x)
mean the initial mean surface and the random rough-
ness profile, respectively, is assumed to be displaced to
P ′[x + ax(x), h(x) + r(x) + az(x)] with the displace-
ment vector a(ax, az). The complex amplitudes at the
CCD plane are represented by superposition of spheri-
cal waves scattered by assemblies of object point P or
P ′. The distribution of r(x) is represented by random
numbers uniformly distributed between (−rm/2, rm/2),
where rm represents the maximum surface roughness. At
the hologram plane, the complex amplitude arising from
the surface point associated with a sample point xj at the
object plane is added with macroscopic amplitude but
with random phase differences introduced by the surface
roughness:

U(s : a) =
M∑

j=1

√
IO(xj + axj)

exp {ik[L(S : P ′) + L(P ′ : Q)] , (1)

where IO(x) is the macroscopic intensity distribution at
the object and

L (A : B) =
√

(xA − xB)2 + (zA − zB)2 (2)

is the distance between the points A(xA,zA) and
B(xB ,zB). At the CCD plane distant from the object
by LH, the complex amplitude is combined with the ref-
erence beam having the complex amplitude UR = AReiδ

to yield the intensity

IH (s : a : δ) = |AR exp (iδ) + U (s : a)|2 . (3)

Each pixel of the CCD with the pitch p, the width w,
and the pixel number N delivers the output

S (m : a : δ) =

(m−1)p+w∫
(m−1)p

IH (s : a : δ) ds (m = 1 − N). (4)

In phase-shifting digital holography[8], at least three
holograms are recorded after phase shifts of the reference
beam. In the case of three-step algorithm, the complex
amplitude of the object wave is derived as

U(m : a)= S(m : a : 0) − S(m : a : π)
+i[S(m : a : 0) − 2S(m : a : π/2)
+S(m : a : π)]. (5)

The image reconstruction is conducted by the angular
spectrum method. It is appropriate here because of no
limitation on the distance between the object and the re-
construction plane as well as the constant sample pitch
of the reconstructed image equal to p.

For image reconstruction by the angular spectrum ex-
pansion, we first calculate the Fourier transform Û(m:a)
of the above derived complex amplitude given by

Û (m : a) =
N∑

n=1

U(n : a)exp (−i2πmn), (6)

which leads to the complex amplitude at the plane Z
from the object calculated as

U(n,Z : a) =
N∑

m=1

Û(m : a)

exp

[
i2π

(
nm − (LH − Z)

√
1
λ2

− (
m

Np
)2

)]
. (7)

For measurement of surface deformation, we calculate
the complex coherence factor defined by an average of
the conjugate product of the complex amplitudes before
and after object deformation on the reconstruction plane:

Γ(n,Z : a) =
M∑

m=−M

U(n + m,Z : 0)

U∗(n + m,Z : a). (8)

It is a unique advantage of digital holography that we can
calculate this coherence factor directly instead of the in-
terference intensity approached in the conventional inter-
ferometry. We have recently shown that the phase of the
coherence factor is proportional to the object displace-
ment and speckle noise is suppressed more efficiently by
this algorithm[9].

We can also derive the speckle displacement at the ob-
servation plane from the cross-correlation function of the
reconstructed intensity given by

C (m, Z : a) =

N−m∑
n=1

|U(n,Z : 0)|2|U(n + m,Z : a)|2

C(0, Z : a)
, (9)

whose peak position and height mean speckle displace-
ment and decorrelation due to object deformation,
respectively[5]. The fringe pattern in holographic in-
terferometry is visible when the speckle displacement
is smaller than the mean speckle size and therefore the
axial dependence of speckle displacement governs the
fringe localization. At the plane of no speckle displace-
ment with only decorrelation, called speckle boiling, the
fringes exhibit the localization.

Phase-shifting digital holography thus provides most
directly both the phase change and speckle displacement
in the 3D space by recording the complex amplitude at
the CCD plane.

The above algorithm is programmed by using Math-
ematica 5.1 to simulate deformation measurements as
well as the surface contouring using dual wavelengths or
two sources[10]. Optical systems and CCD specifications
for hologram recording can be chosen arbitrarily. Even
effects of the recording bit depths and phase-shifting
error can also be analyzed. These effects are difficult to
investigate analytically.

In the following, we present the results for deformation
measurement. The object is a plate with the diame-
ter of 10 mm. The number of object points equally
spaced is taken to be 1024. The mean object sur-
face is assumed to be flat and the maximum surface
roughness rm is taken to be equal to 10 µm. Ob-
ject deformation is a tilt about the y-axis Ωy leading
to an out-of-plane displacement given by az = Ωyx.
We assume the collimated illumination with the normal
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Fig. 2. CCD signals for holograms with phase shift (a) 0, (b)
π/2, and (c) π before object deformation.

Fig. 3. (a) Amplitude and (b) phase derived from the signals
shown in Fig. 2.

incidence and the wavelength 657 nm. No parabolic ap-
proximation is employed for the distances between the
source and the object and between the object and the
observation point. The CCD is located at a distance
of LH = 200 mm from the object and has the pixels of
pitch p = 5 µm with a width of photosensitive region
w = 5 µm and the pixel number N = 1024. The CCD
outputs resulting from 3 phase-shifted holograms before
object deformation given by Eq. (4) are displayed in Fig.
2. These outputs are analyzed by Eq. (5) to derive the

Fig. 4. Distributions of (a) the modulus and phase of the
coherence factor (b) before and (c) after averaging.

Fig. 5. Cross-section of the coherence factor at the localiza-
tion plane (a) without and (b) with averaging.

Fig. 6. (a) Density plot and (b) 3D display of the intensity
cross-correlation function.

amplitude and phase, as shown in Fig. 3.
The X-Z distributions of the amplitude and phase

of the coherence factor given by Eq. (8) are shown in
Fig. 4. The modulus and the phase of the factor without
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Fig. 7. (a) Phase of the coherence factor and (b) contour
of the intensity cross-correlation in the presence of tilt and
in-plane translation of the object.

Fig. 8. Intensity cross-correlation due to in-plane translation
of the object.

Fig. 9. Axial dependences of speckle displacement due to (a)
in-plane translation and (b) tilt of the object.

averaging (M = 1) and only the phase of the averaged
factor (M = 3) are displayed. The scale of X-axis is equal
to the sensor pitch 5 µm and that of Z-axis is taken to
be the axial speckle size given by ∆Z = λ(LH/Np)2.
Analytically, the phase of the averaged coherence factor
should be directly proportional to az. We note that the
phase of the coherence factor exhibits localization at Z
= 0. The localization should occur at the plane of no
speckle displacement and the fringe contrast depends on
the ratio of the speckle displacement to the mean speckle
size[6]. The depth of the localization is ten times larger
than the axial speckle size ∆Z. It depends on the fringe
frequency.

The cross-sections of the phases for M = 1 and 3 at
the localization plane are shown in Fig. 5. We see that

the speckle noise is effectively suppressed by the spatial
averaging with M = 3. The effects of speckle suppression
in experiments have been reported before[9].

The speckle displacement is obtained from the peak
position of the intensity cross-correlation given by Eq.
(9), and the contour is plotted in Fig. 6. Although the
correlation computation was carried out by means of
one-dimensional (1D) fast Fourier transform (FFT) algo-
rithm using 1024 pixels with the pitch p, only the values
for 128 shifts are displayed. The position of the very
sharp correlation peak represents speckle displacement
and is proportional to Z as predicted by a theory[11].
The speckle displacement actually vanishes at the plane
of fringe localization that coincides with the object plane
and changes its sign across the plane. The speckle dis-
placement is analytically given by Ax = 2ΩyZ, that
agrees well with the present result.

The localization plane is shifted when an in-plane dis-
placement ax is added. The amount of shift is given
by SL = ax/2Ωy. This shift is demonstrated by adding
the in-plane translation ax to the above simulation. The
results from Ωy = 0.0004 rad and ax = 0.05 mm are dis-
played in Fig. 7, where the phase of the coherence factor
with M = 3 and the distribution of speckle displacement
are shown. Thus the in-plane translation shifts the local-
ization plane and the plane of speckle boiling out of the
object plane. The speckle displacement at each plane is
increased by an amount equal to the given translation.
We also calculate the axial distribution of speckle dis-
placement caused by pure in-plane translation, as shown
in Fig. 8. The speckle displacement is equal to the
object translation and uniform in space. In this case,
no fringe pattern is observed at the observation plane,
but in the Fourier plane the fringes of equal inclination
are localized that also correspond to the Young fringes
observed in speckle photography.

The speckle displacement caused by the tilt and trans-
lation of the object under the collimated illumination
can be illustrated through Fig. 9. Effects of a lens
used in ordinary imaging are also shown. The plane
of fringe localization can be used for detection of the
surface position[12], but the same measurement can be
accomplished from detection of speckle displacement
with higher resolution because its axial dependence can
be more sensitized by increasing the tilt angle. This cor-
responds to increasing the spatial frequency of the fringe
pattern to reduce the localization depth.

In conclusion, we have reported the method and results
for the numerical simulation of deformation measurement
of diffuse objects by phase-shifting digital holography.
As an advantage of the digital holography over the con-
ventional holographic or speckle interferometry, we can
directly calculate the interference term and attain higher
signal-to-noise ratio in the measurement. This has proven
to be more effective to suppress the speckle noise appear-
ing in phase analysis than simply averaging the phase
difference. We can also display the 3D distribution of
the complex coherence factor whose phase is directly
proportional to the object displacement. This is the
background of classical fringe localization phenomenon.
It is well known that at the localization position, the
speckle displacement is less than the mean speckle size.
Axial distribution of speckle displacement derived from
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the cross-correlation of the intensities has also been dis-
played to demonstrate the situation. Thus by comparing
these distributions we can measure not only the out-
of-plane displacement but also the in-plane translation
of the object. Although the localization position for
pure tilt of the object provides the surface position with-
out attaching any marking on the surface, the speckle
displacement caused by tilt of the object leads to the
position more accurately. The results reported here will
help us to extract much more information about shape,
deformation, and position of diffusely reflecting surfaces
by reconstructing 3D distributions of the intensity and
the coherence factor of the scattered coherent field.
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